
Journal of Computational Physics163,467–488 (2000)

doi:10.1006/jcph.2000.6577, available online at http://www.idealibrary.com on

The Continuous Galerkin Method
Is Locally Conservative

Thomas J. R. Hughes, Gerald Engel, Luca Mazzei, and Mats G. Larson

Division of Mechanics and Computation, William F. Durand Building,
Stanford University, Stanford, California 94305-4040

Received November 23, 1999; revised June 6, 2000

We examine the conservation law structure of the continuous Galerkin method.
We employ the scalar, advection–diffusion equation as a model problem for this
purpose, but our results are quite general and apply to time-dependent, nonlinear
systems as well. In addition to global conservation laws, we establish local con-
servation laws which pertain to subdomains consisting of a union of elements as
well as individual elements. These results are somewhat surprising and contradict
the widely held opinion that the continuous Galerkin method is not locally conser-
vative. c© 2000 Academic Press

1. INTRODUCTION

In comparisons of discontinuous and continuous Galerkin methods, the local conservation
property of the former is often identified as an advantageous property, although the precise
advantage is not often explained. Let us take the point of view here that local conservation
is at least desirable, possibly helpful, and certainly not harmful. Local conservation, and in
particular element conservation, emanates from the property that the weighting function can
be set exactly to value 1 on the subdomain or element of interest and zero elsewhere. Due to
the discontinuous nature of the weighting function space, this is possible in the discontinuous
Galerkin method on an element-by-element basis. (In the finite volume method, a similar
property holds for the volumes, or covolumes, depending on whether the method is cell, or
node, centered, respectively.)

In contrast, it is usually said that the continuous Galerkin method is globally conservative,
but not locally conservative. We have trouble with this statement on both counts and are of
the opinion that the conservation law structure of the continuous Galerkin method is not
very well understood. Our goal in this work is to shed some light on this subject.

We begin in Section 2 by introducing a model problem which serves as a vehicle for
discussing conservation. We use the steady, scalar advection–diffusion equation for this
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purpose. We also derive results for the limiting case of no diffusion, the so-called (hyper-
bolic) “reduced problem.” Although the problem we treat is a simple one, the ideas are
more general and apply to typical situations such as the compressible and incompressible
Navier–Stokes equations. Likewise, the results obtained may also be generalized to the
unsteady case by employing the time-discontinuous Galerkin method on space–time slabs
wherein the finite element spaces are continuous within each slab.

We allow for different types of boundary conditions such as Dirichlet conditions and
Neumann conditions on the total and/or diffusive flux. We distinguish between boundary
conditions on inflow and outflow partitions of the body, and release outflow conditions for
the reduced problem. We treat boundary conditions in the typical way; namely, Dirichlet
conditions are enforced strongly, whereas Neumann conditions are enforced weakly. In each
case we identify the correct conservation law structure for the theory and then proceed to
investigate the same for the continuous Galerkin method. We note that all results obtained
hold exactly for both Galerkin and stabilized Galerkin methods (e.g., SUPG, GLS).

We first explore global conservation in Section 3. We note that the global conservation
law requires that the weighting function whose value is precisely 1 throughout the domain
of the boundary value problem be present in the weighting function space. This is only
the case for no Dirichlet boundary conditions, because strong enforcement of the Dirichlet
condition necessitates that weighting functions take value zero on the Dirichlet portion of
the boundary. Consequently, global conservation only occurs when we have all Neumann
boundary conditions. In cases where there are Dirichlet conditions, we can say nothing
about global conservation.

However, there is a well-known remedy to the problem of global conservation (see, e.g.,
Wheeler [11], Douglaset al. [8], Careyet al. [3, 4], Oshimaet al. [10], Mizukami [9],
Greshoet al. [5], Barrett and Elliott [2], Hughes [6, p. 107], Hugheset al. [7]): Introduce
a modified (i.e., “mixed”) formulation with an auxiliary field which amounts to the flux
on the Dirichlet portion of the boundary. The modified formulation reduces to the usual
continuous Galerkin method plus a “postprocessing” calculation to determine the flux.
This field is expanded in terms of the basis functions omitted to satisfy the homogeneous
Dirichlet boundary condition. The resulting flux possesses remarkable properties: (i) It is the
missing link in the global conservation structure of the method, and (ii) it achieves superior
convergence characteristics (i.e., “superconvergence,” Babuˇska and Miller [1].) The global
conservation law of the governing theory is then obtained for the (modified) continuous
Galerkin method. This result then confirms the usual assertion that the continuous Galerkin
method is globally conservative.

In Section 4 we examine the issue of local conservation of the continuous Galerkin
method. Specifically, we endeavor to obtain a conservation law for a subdomain consisting of
a union of connected element domains. It is usually thought that this is not possible because
the weighting function taking on value 1 on the subdomain, and identically zero elsewhere,
is not available in the continuous Galerkin method. However, we point out that the method
of establishing global conservation is a paradigm capable of exposing the local conservation
structure of the continuous Galerkin method as well. For the subdomain under consideration,
we introduce an auxiliary boundary flux field and develop a modified formulation which
reduces to the usual continuous Galerkin method plus the previous modification to attain
global conservation. With the usual solution of the global auxiliary boundary flux in hand,
the new modification entails a subsequent “postprocessing” calculation for the auxiliary
boundary flux on the subdomain. We show that this flux is the missing link to conservation
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on the subdomain and show that the formulation thereby attains the exact conservation law
on the subdomain. Furthermore, we show that if a similar calculation is performed with
respect to the complementary subdomain, a pointwise identical balancing flux is obtained.
In other words, uniqueness is achieved on the interface between the subdomains.

In Section 5 we specialize the results of Section 4 to an individual element subdomain
and determine the element conservation law. This result seems to us to refute the notion
that the continuous Galerkin method is not locally conservative. We also argue that the
auxiliary flux is a continuous redistribution of the element nodal fluxes which likewise are a
conserved quantity. In fact, all conservation properties of the auxiliary fields emanate from
the conservation of nodal fluxes. This is where the fundamental conservation structure of the
continuous Galerkin method resides and this is why one is able to redistribute the fluxes con-
tinuously in a conservative way. It seems that this observation has been missed heretofore.
In conclusion, perhaps a more accurate characterization of the conservation comparison
between discontinuous and continuous Galerkin methods is that the discontinuous Galerkin
method’s fundamental local conservation property is with reference to element subdomains,
whereas for the continuous Galerkin method, it is with reference to nodal resultant fluxes.
In the former case the conservation structure is transparent, whereas in the latter it requires
elucidation through the introduction of auxiliary fluxes.

In Section 6 we present some numerical calculations in support of the theory.
The comparison of continuous and discontinuous Galerkin methods involves many as-

pects. We conjecture that each method will find situations in which it is preferable for
various reasons. We hope that with respect to the conservation properties we have clarified
and stimulated the debate.

2. THE SCALAR STEADY ADVECTION DIFFUSION EQUATION

2.1. Preliminaries

LetÄ be an open, bounded region in IRd, whered is the number of space dimensions,
and let0 = ∂Ä denote the boundary ofÄ, assumed piecewise smooth. The unit outward
normal vector to0 is denoted byn = (n1, n2, . . . ,nd). Leta denote the given flow velocity,
assumed solenoidal, i.e.,∇ · a= 0. The following notations are useful:

an = n · a, (1)

a+n = (an + |an|)/2, (2)

a−n = (an − |an|)/2. (3)

Let {0−, 0+} and{0g, 0h} be partitions of0, where

0− = {x ∈ 0 |an(x) < 0} (inflow boundary), (4)

0+ = 0 − 0− (outflow boundary). (5)

Observe from (5) that we use a minus sign to denote set subtraction. The following subsets
are also required (see Fig. 1)

0±g = 0g ∩ 0±, (6)

0±h = 0h ∩ 0±. (7)
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FIG. 1. Illustration of boundary partitions for the elliptic case.

Let κ = const. > 0 denote the diffusivity. Various fluxes are important:

σa(u) = −au (advective flux), (8)

σd(u) = κ∇u (diffusive flux), (9)

σ = σa+ σd (total flux), (10)

σ a
n = n · σa, (11)

σ d
n = n · σd, (12)

σn = n · σ. (13)

Let D denote a domain (e.g.,Ä,0). The L2(D) inner product and norm are denoted by
( · , ·)D and‖·‖D, respectively.

2.2. Elliptic Case

The problem consists of findingu = u(x) ∀ x ∈ Ǟ, such that

Lu ≡ −∇ · σ(u) = f in Ä, (14)

u = g on0g, (15)

−a−n u+ σ d
n (u) = h on0h, (16)

wheref : Ä→ IR, g : 0g → IR andh : 0h → IR are prescribed data. The boundary con-
dition can be understood by letting

h = h− on0−h (total flux), (17)

h = h+ on0+h (diffusive flux). (18)

2.3. Variational Formulation

The variational form of the boundary value problem is stated in terms of the following
function spaces:

S = {u ∈ H1(Ä) | u = g on0g}, (19)

V = {w ∈ H1(Ä) | w = 0 on0g}. (20)



CONTINUOUS GALERKIN METHOD 471

The objective is to findu ∈ S, such that

B(w, u) = L(w) ∀w ∈ V, (21)

where

B(w, u) ≡ (∇w,σ(u))Ä + (w,a+n u)0h , (22)

L(w) ≡ (w, f)Ä + (w, h)0h . (23)

The formal consistencyof Eq. (21) with the strong form of the problem, Eqs. (14)–(16),
may be verified as follows:

0 = B(w, u)− L(w)

= −(w,∇ · σ(u))Ä + (w, σn(u))0h + (w,a+n u)0h − (w, f)Ä − (w, h)0h

= −(w,∇ · σ(u)+ f)Ä + (w,−a−n u+ σ d
n (u)− h)0h ∀w ∈ V. (24)

Stability, or coercivity, is established as follows:

B(w,w) = (∇w,−aw + κ∇w)Ä + (w,a+n w)0h

= −1

2
(w,anw)0h + κ‖∇w‖2Ä + (w,a+n w)0h

= κ ‖∇w‖2Ä +
1

2

∥∥|an|1/2w
∥∥2
0h
∀w ∈ V. (25)

2.4. Hyperbolic Case (“Reduced Problem”)

In the absence of diffusion we cannot specify a boundary condition on the outflow
boundary. This time we employ the partition0 = 0−g ∪ 0−h ∪ 0+ and we define0g = 0−g
and0h = 0−h (see Fig. 2). The equations of the boundary value problem are

Lu ≡ −∇ · σa(u) = f in Ä, (26)

u = g on0−g , (27)

σ a
n(u) = h− on0−h . (28)

FIG. 2. Illustration of boundary partitions for the hyperbolic case.
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The bilinear and linear forms are defined as

B(w, u) = (∇w,σa(u))Ä + (w,a+n u)0, (29)

L(w) = (w, f)Ä + (w, h−)0−h . (30)

Consistency and stability are established as follows:

Consistency.

0 = B(w, u)− L(w)

= −(w,∇ · σa(u))Ä + (w,−anu)0 + (w,a+n u)0 − (w, f)Ä − (w, h−)0−h
= −(w,∇ · σa(u)+ f)Ä + (w,−a−n u− h−)0−h ∀w ∈ V. (31)

Stability.

B(w,w) = (∇w,−aw)Ä + (w,a+n w)0
= −1

2
(w,anw)0 + (w,a+n w)0

= 1

2

∥∥|an|1/2w
∥∥2
0
∀w ∈ V. (32)

2.5. Finite Element Formulation

Consider a partition ofÄ into finite elements. LetÄe be the interior of theeth element,
let 0e be its boundary, and let

Ä̃ =
⋃

e

Äe (element interiors). (33)

LetSh ⊂ S,Vh ⊂ V becontinuousfinite element spaces consisting of polynomials of order
k on each element. The classicalcontinuous Galerkin methodis:

Finduh ∈ Sh, such that

B(wh, uh) = L(wh) ∀wh ∈ Vh. (34)

Stabilized variants are:

SUPG.

BSUPG(w
h, uh) = LSUPG(w

h), (35)

BSUPG(w
h, uh) ≡ (wh, uh)+ (τa ·∇wh,Luh)Ä̃, (36)

LSUPG(w
h) ≡ L(wh)+ (τa ·∇wh, f)Ä̃. (37)

GLS.

BGLS(w
h, uh) = LGLS(w

h), (38)

BGLS(w
h, uh) ≡ B(wh, uh)+ (τLwh,Luh)Ä̃, (39)

LGLS(w
h) ≡ L(wh)+ (τLwh, f)Ä̃. (40)
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Remarks.

1. τ is the stabilization parameter.
2. In the hyperbolic case, or for piecewise linear elements in the elliptic case, SUPG and

GLS become identical.
3. Galerkin, SUPG, and GLS areresidual methods; i.e., Eqs. (34), (35) and (38) are

satisfied ifuh is replaced byu, the exact solution of the boundary value problem.

2.6. Global Conservation

To extract the statement of global conservation from the variational formulation, we need
to be able to set the weighting function to one. We can only do this if0g = ∅. In this case
Eq. (21) yields:

Elliptic case.

0 = B(1, u)− L(1)

=
∫
0

a+n u d0 −
∫
Ä

f dÄ−
∫
0

h d0, (41)

which may be written as

0=
∫
0−

h− d0 +
∫
Ä

f dÄ+
∫
0+
(−anu+ h+) d0. (42)

Hyperbolic case.

0 = B(1, u)− L(1)

=
∫
0

a+n u d0 −
∫
Ä

f dÄ−
∫
0−h

h− d0, (43)

which may be written as

0=
∫
0−

h− d0 +
∫
Ä

f dÄ+
∫
0+
(−anu) d0. (44)

Remarks.

1. Thesameconservation results may be derived for the Galerkin finite element method,
SUPG, and GLS.

2. Note that for the general case (i.e.,0g 6= ∅), nothingcan be said about global conser-
vation for the finite element methods. However, it is well known how to rectify this situation
(see Hughes [6, p. 107]; Hugheset al. [7]).

3. GLOBAL CONSERVATION FOR THE GENERAL CASE

We assume0g 6= ∅. We shall work with the Galerkin finite element method. We note
that the same results can be obtained for SUPG and GLS. Global conservation can be
attained by defining anauxiliary flux on 0g, denotedH(Ä) : 0g → IR, and employing a
modified variational formulation. The idea is to add to the weighting function space all
the finite element functions associated with0g. These are omitted in the definition ofVh
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FIG. 3. The set of boundary nodes on0g and the support of basis functions associated with these nodes.

because functions inVh are required to vanish on0g. Let η denote the set of all nodal
indicesA = 1, 2, . . . ,nnp. Let ηg be the subset corresponding to nodes located on0g, i.e.,
ηg = {A | xA ∈ 0g} (see Fig. 3).1 Vh consists of all functions that are linear combinations
of the basis functions associated with nodesη − ηg, viz.,

Vh = span{NA}A∈η−ηg , (45)

whereNA is the basis function associated with nodexA. Let

Vh = Vh ⊕ span{NA}A∈ηg . (46)

This is the “completion” of the finite element space. Note that the constant function
having value 1 is contained inVh. The modified form of Galerkin’s method is given by:

Finduh ∈ Sh andHh(Ä) ∈ Vh − Vh such that

(Wh, Hh(Ä))0g = B(Wh, uh)− L(Wh) ∀Wh ∈ Vh. (47)

Note that (47) splits into two subproblems:

0 = B(wh, uh)− L(wh) ∀wh ∈ Vh, (48)

(Wh, Hh(Ä))0g = B(Wh, uh)− L(Wh) ∀Wh ∈ Vh − Vh. (49)

Note that (48) is the usual problem which definesuh ∈ Sh. It is identical to the unmodified
case. Equation (49) is a problem which determinesHh(Ä). In it we assumeuh is already
determined by (48), so the right-hand side is completely determined. Furthermore, note
that this amounts to a problem involving only nodes on the boundary0g and thus may be
thought of as a small “postprocessing” calculation. The coefficient matrix for (49) is the
“mass matrix” associated with0g, viz.,∑

B∈ηg

(NA, NB) Hh
B(Ä) = B(NA, u

h)− L(NA) ∀ A ∈ ηg, (50)

whereHh
B(Ä) is the nodal value ofHh(Ä) at xB. That Hh(Ä) defines the conserved total

flux along0g is immediately evident by settingWh = 1 in (47):

1 When we present schematic diagrams illustrating ideas, for simplicity, we show piecewise linear finite element
spaces. However, the results are general and are applicable to spaces of arbitrary order.
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Elliptic case.∫
0g

Hh(Ä) d0 = (1, Hh(Ä))0g

= B(1, uh)− L(1)

=
∫
0h

a+n uh d0 −
∫
Ä

f dÄ−
∫
0h

h d0

=
∫
0+h

(anuh − h+) d0 −
∫
Ä

f dÄ−
∫
0−h

h− d0, (51)

or, equivalently,

0=
∫
0g

Hh(Ä) d0 +
∫
0+h

(−anuh + h+) d0 +
∫
0−h

h− d0 +
∫
Ä

f dÄ. (52)

Hyperbolic case.∫
0g

Hh(Ä) d0 = (1, Hh(Ä))0g

= B(1, uh)− L(1)

=
∫
0

a+n uh d0 −
∫
Ä

f dÄ−
∫
0−h

h− d0

=
∫
0+

anuh d0 −
∫
Ä

f dÄ−
∫
0−h

h− d0, (53)

or, equivalently,

0=
∫
0−g

Hh(Ä) d0 +
∫
0+
(−anuh) d0 +

∫
0−h

h− d0 +
∫
Ä

f dÄ, (54)

where we have used the fact that in this case0g = 0−g .

Remarks.

1. Note that in the elliptic case, diffusive flux along0g can be computed by adding
anuh = an g to Hh.

2. Boundary fluxes computed in this way exhibit superior convergence behaviour, i.e.,
“superconvergence,” see Babuˇska and Miller [1].

4. LOCAL CONSERVATION LAWS

The procedure to derive boundary fluxes attaining global conservation, described in the
previous section, serves as a paradigm for constructing conserved quantities over subdo-
mains. We shall now start with (47), assuming thatuh andHh(Ä) have been obtained, and
ask: What is the conserved boundary flux associated with a subdomain consisting of a union
of connected elements? Letω ⊂ Ä denote the subdomain and let∂ω denote its boundary.
Let γ = ∂ω − 0, the part of∂ω not contained in0. There are two cases of interest: (i)
∂ω ∩ 0 = ∅ or, at most, consists of a finite number of isolated points in two dimensions,
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FIG. 4. Subdomains consisting of a union of elements. Case (i):ω is interior toÄ or intersects0, at most, at
a finite number of isolated points in two dimensions, curves in three dimensions, etc. Case (ii):ω intersects0 and
∂ω ∩ 0 is a set of finite measure with respect to the boundary surface form.

curves in three dimensions, etc. (see Fig. 4); and (ii)∂ω ∩ 0 6= ∅ and∂ω ∩ 0 has finite
measure with respect to the boundary surface form.

We now introduce the fieldHh(ω) defined in terms of the shape functions associated
with nodes residing on ¯γ , the closure ofγ . This set of nodes is denotedηγ̄ . So

Hh(ω) =
∑
A∈ηγ̄

NA Hh
A(ω), (55)

and we denote

Gh = span{NA}A∈ηγ̄ . (56)

Now our problem is, givenuh ∈ Sh andHh(Ä) ∈ Vh − Vh, the solutions of (48) and (49),
respectively, findHh(ω) ∈ Gh such that

(Wh, Hh(ω))γ = Bω(W
h, uh)− Lω(W

h)− (Wh, Hh(Ä))0g∩∂ω ∀Wh ∈ Vh, (57)

where:

Elliptic case.

Bω(W
h, uh) ≡ (∇Wh,σ(uh))ω + (Wh,a+n uh)0h∩∂ω, (58)

Lω(W
h) ≡ (Wh, f)ω + (Wh, h)0h∩∂ω. (59)

Hyperbolic case.

Bω(W
h, uh) ≡ (∇Wh,σa(uh))ω + (Wh,a+n uh)0∩∂ω, (60)

Lω(W
h) ≡ (Wh, f)ω + (Wh, h−)0−h ∩∂ω. (61)
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As before, Eq. (57) splits into two problems:

(Wh, Hh(ω))γ = Bω(W
h, uh)− Lω(W

h)− (Wh, Hh(Ä))0g∩∂ω ∀Wh ∈ Gh, (62)

and

0= Bω(W
h, uh)− Lω(W

h)− (Wh, Hh(Ä))0g∩∂ω ∀Wh ∈ Vh −Gh. (63)

The matrix counterpart of the first problem serves to defineHh(ω):∑
B∈ηγ̄

(NA, NB)γ Hh
B(ω) = Bω(NA, u

h)− Lω(NA)− (NA, Hh(Ä))0g∩∂ω ∀A ∈ ηγ̄ . (64)

The second problem is an identity by virtue of Eq. (47). To see this, select aWh whose
support is contained entirely withinω. In this case

B(Wh, uh) = Bω(W
h, uh), (65)

L(Wh) = Lω(W
h), (66)

(Wh, Hh(Ä))0g = (Wh, Hh(Ä))0g∩∂ω. (67)

Consequently, (63) follows from (47) in this case. ForWh having support entirely outside
of ω, all terms in (63) are identically zero.

The conservation laws implied by (57) are established by selecting anyWh ∈ Vh such
that

Wh|ω = 1. (68)

With this selection, we have:

Elliptic case.∫
γ

Hh(ω) dγ = Bω(1, u
h)− Lω(1)−

∫
0g∩∂ω

Hh(Ä) d0

=
∫

0h∩∂ω
a+n uh d0−

∫
ω

f dω−
∫

0h∩∂ω
h d0−

∫
0g∩∂ω

Hh(Ä) d0

=
∫

0+h ∩∂ω

(a+n uh− h+) d0−
∫
ω

f dω

−
∫

0−h ∩∂ω

h− d0−
∫

0g∩∂ω
Hh(Ä) d0, (69)

or, equivalently,

0 =
∫
γ

Hh(ω) dγ +
∫

0+h ∩∂ω

(−a+n uh + h+) d0

+
∫

0−h ∩∂ω

h− d0 +
∫

0g∩∂ω
Hh(Ä) d0 +

∫
ω

f dω. (70)
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Hyperbolic case.∫
γ

Hh(ω) dγ = Bω(1, u
h)− Lω(1)−

∫
0g∩∂ω

Hh(Ä) d0

=
∫

0∩∂ω
a+n uh d0−

∫
ω

f dω−
∫

0−h ∩∂ω

h− d0−
∫

0g∩∂ω
Hh(Ä) d0

=
∫

0+∩∂ω
anuh d0−

∫
ω

f dω−
∫

0−h ∩∂ω

h− d0−
∫

0g∩∂ω
Hh(Ä) d0, (71)

or, equivalently,

0 =
∫
γ

Hh(ω) dγ +
∫

0+∩∂ω
(−anuh) d0 +

∫
0−h ∩∂ω

h− d0+
∫

0−g ∩∂ω

Hh(Ä) d0 +
∫
ω

f dω,

(72)

where, again, we have used the fact that0g = 0−g in the hyperbolic case.

Uniqueness. We might ask the following question: Suppose we performed a simi-
lar construction for the complementary subdomainÄ− ω. What is the relationship be-
tweenHh(Ä− ω) andHh(ω)? We obviously would hope that they would be the same up
to a sign reversal. A simple argument verifies this.

By analogy with Eq. (57), we have

(Wh, Hh(Ä− ω))γ
= BÄ−ω(Wh, uh)− LÄ−ω(Wh)− (Wh, Hh(Ä))0g∩∂(Ä−ω) ∀Wh ∈ Vh. (73)

Add (57) and (73),

(Wh, Hh(ω)+ Hh(Ä− ω))γ = Bω(W
h, uh)+ BÄ−ω(Wh, uh)− Lω(W

h)

− LÄ−ω(Wh)− (Wh, Hh(Ä))0g∩∂ω

− (Wh, Hh(Ä))0g∩∂(Ä−ω)

= B(Wh, uh)− L(Wh)− (Wh, Hh(Ä))0g

= 0 ∀Wh ∈ Vh (74)

by (47). Now restrictWh to Gh ⊂ Vh,

(Wh, Hh(ω)+ Hh(Ä− ω))γ = 0 ∀Wh ∈ Gh, (75)

which is equivalent to the matrix problem∑
B∈ηγ̄

(NA, NB)γ
(
Hh

B(ω)+ Hh
B(Ä− ω)

) = 0 ∀A ∈ ηγ̄ , (76)
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FIG. 5. Subdomain interface fluxesHh(ω) andHh(Ä− ω) equilibrate pointwise and are conservative with
respect to subdomainsω andÄ− ω, respectively.

from which it follows that, pointwise onγ ,

Hh(ω) ≡ −Hh(Ä− ω). (77)

See Fig. 5 for a schematic illustration of this result.

5. ELEMENT CONSERVATION LAWS

The results obtained in Section 3 for an arbitrary subset of connected elements can
be specialized to an individual element. Simply setω = Äe, for e fixed. As before, let
γ = γ e ≡ 0e− 0, where0e = ∂Äe. Now (57) becomes

(Wh, Hh(Äe))γ e = BÄe(Wh, uh)− LÄe(Wh)− (Wh, Hh(Ä))0g∩0e ∀Wh ∈ Vh, (78)

where:
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Elliptic case.

BÄe(Wh, uh) ≡ (∇Wh,σ(uh))Äe + (Wh,a+n uh)
0h∩0e, (79)

LÄe(Wh) ≡ (Wh, f)Äe + (Wh, h)0h∩0e. (80)

Hyperbolic case.

BÄe(Wh, uh) ≡ (∇Wh,σa(uh))Äe + (Wh,a+n uh)
0∩0e, (81)

LÄe(Wh) ≡ (Wh, f)Äe + (Wh, h−)0−h ∩0e. (82)

Let ηe denote the node numbers of nodes attached to ¯γ e. Then (78) reduces to the local
problem∑

B∈ηe

(NA, NB)γ e Hh
B(Ä

e) = f e
A ≡ BÄe(NA, u

h)− LÄe(NA)− (NA, Hh(Ä))0g∩0e

=
∫
Äe

∇NA · σ(uh) dÄ −
∫

0+h ∩0e

NA(−a+n uh + h+) d0

−
∫

0−h ∩0e

NAh− d0 −
∫

0g∩0e

NA Hh(Ä) d0

−
∫
Äe

NA f dÄ ∀A ∈ ηe. (83)

We refer to feA as theeth element contribution to the flux at nodeA, or simply, theelement
nodal flux. From Eq. (78), we have the element conservation laws:

Elliptic case.

0 =
∫
γ e

Hh(Äe) d0 +
∫

0+h ∩0e

(−a+n uh + h+) d0

+
∫

0−h ∩0e

h− d0 +
∫

0g∩0e

Hh(Ä) d0 +
∫
Äe

f dÄ. (84)

Hyperbolic case.

0 =
∫
γ e

Hh(Äe) d0 +
∫

0+∩0e

(−a+n uh) d0

+
∫

0−h ∩0e

h− d0 +
∫

0−g ∩0e

Hh(Ä) d0 +
∫
Äe

f dÄ. (85)

We also note that from the uniqueness argument presented in the preceeding section, we
have the pointwise conservation relationship

Hh(Äe) = −Hh(Ä−Äe). (86)
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FIG. 6. ElementÄe interface fluxHh(Äe) equilibrates subdomainÄ–Äe interface fluxHh(Ä–Äe) pointwise.
Hh(Äe) andHh(Ä–Äe) are conservative with respect toÄe andÄ–Äe, respectively.

See Fig. 6. By summing Eq. (83) overA ∈ ηe, we see that∫
γ e

Hh(Äe) d0 =
∑
A∈ηe

fe
A. (87)

Thus, by the element conservation laws, (84) and (85), we see that the sum of the element
nodal fluxes represents a conserved quantity. See Figs. 7 and 8 for schematic illustrations
of the element conservation laws.

By returning to the global equation (47) and selectingWh = NA, for A fixed, we see
that

0 = B(NA, u
h)− L(NA)− (NA, Hh(Ä))0g

=
∑

e∈E(A)

(
BÄe(NA, u

h)− LÄe(NA)− (NA, Hh(Ä))0g∩0e

)
=
∑

e∈E(A)

fe
A, (88)
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FIG. 7. Element conservation law(meas(0e ∩ 0) = 0). Hh(Äe) is the conservative redistribution of the nodal
fluxes, feA, in terms of the basis functions,NA.

whereE(A) is the set of element numbers of elements attached to nodeA. See Fig. 9. The
fe

A’s may be thought of as a delta distribution representation of the conserved fluxes.

6. NUMERICAL EXAMPLES: CONSERVATIVE FLUX CALCULATION

We consider the following boundary value problem: Findu such that

−1u = 1 inÄ, (89)

u = 0 on0, (90)

whereÄ = [−1, 1]× [−1, 1] ⊂ IR2 andÄ = Ä1 ∪Ä2 withÄ1 = [−1, 0.5]× [−1, 1] and
Ä2 = [0.5, 1]× [−1, 1], with boundaries01 and02, respectively. An approximate solution
is computed using the standard continuous Galerkin method with piecewise linears on
unstructured triangulations which respect the subdomainsÄ1 andÄ2, see Fig. 10.

We calculate approximations of the normal flux

σn = n · ∇u (91)

on the boundaries0,01, and02 using the methodology described previously. We shall refer
to approximations computed in this manner as the “conservative flux.” For comparison, we
also calculate the exact flux using a Fourier series solution and a numerical approximation



FIG. 8. Element conservation law(meas(0e ∩ 0) 6= 0).

FIG. 9. Conservation of nodal fluxes.
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FIG. 10. (i) DomainÄ = Ä1 ∪Ä2. (ii) Coarse mesh with 358 triangles and 201 nodes. (iii) Fine mesh with
1342 triangles and 712 nodes. (iv) Contours of the numerical solution on the fine mesh.

FIG. 11. The exact flux (solid), the conservative flux (dashed), and the flux computed by direct evaluation
of element derivatives (dash-dotted) are plotted on the boundary starting in the upper left-hand corner (−1, 1) in
counter-clockwise fashion.
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FIG. 12. The exact flux (solid), the conservative flux (dashed), and the directly evaluated flux (dash-dotted)
plotted as functions on01 starting in the corner (−1,−1) in counter-clockwise direction.

obtained by direct evaluation of the flux, obtained by computing derivatives of the numerical
solution in elements adjacent to the boundary in question.

In Fig. 11 we present fluxes for the external boundary0. The approximations to the
exact solution were computed using the coarse mesh. We observe that the conservative
flux faithfully approximates the exact solution, whereas the direct evaluation of flux is
significantly in error. Furthermore, the conservative flux is verified to satisfy the conservation
law, namely, ∫

Ä

f+
∫
0

σn = 0, (92)

to machine precision, as anticipated by the theory.
In Figs. 12 and 13, we show the fluxes on01 and02, respectively. The numerical calu-

lations were performed on the fine mesh. In the case of the evaluation of flux by direct
calculation of element derivatives, we have computed the flux on the internal interface as
the average of the fluxes computed on elements to the left and right of the interface. This
substantially improves these results, as can be seen by comparing Fig. 14 with Figs. 12 and
13. We note, that for the calculation of the conservative flux we again satisfy the conservation
law ∫

Äi

f+
∫
0i

σn = 0 for i = 1, 2, (93)

to machine precision, consistent with the theory. Further, the conservative flux is a much
more accurate approximation than the direct evaluation of flux. However, on the interface
region, the averaged direct evaluation produces commensurate accuracy, but does not attain
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FIG. 13. The exact flux (solid), the conservative flux (dashed), and the directly calculated flux (dash-dotted)
as functions on02 starting in (0.5,−1) in counter-clockwise direction.

conservation. The only negative aspect of the conservative flux calculation is that we have
enforced continuity of flux around the endpoints of the interface where the exact solution
is discontinuous. As might be anticipated by virtue of the fact that the conservative flux
calculation amounts to anL2-projection, overshoots and undershoots are exhibited at points

FIG. 14. Comparison between: left (dashed), right (dash-dotted), and average (solid) of the directly evaluated
fluxes on the internal interface.
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of discontinuity of the exact solution. This result suggests that the conservative flux approx-
imation should be allowed to be discontinuous at known locations of discontinuity in the
exact solution.

7. CONCLUSIONS

1. From (88) we see that the element nodal fluxes areconserved node-wise.
2. Likewise, an individual element’s nodal fluxes are aconservedquantity by virtue

of (87).
3. The Hh(Äe) represents a continuous redistribution of elemente’s nodal fluxes, in

terms of the basis functions, thatpreserves conservation.
4. For the stabilized methods, the element fluxes change, but the conservation laws

remain the same.
5. Nodal fluxes correspond to the notion of nodal forces in structural mechanics. Struc-

tural engineers seem comfortable with element nodal force resultants (i.e., the fe
A’s here)

whereas fluid mechanicians do not. Rather, fluid mechanicians seem comfortable with dis-
tributed fluxes over the boundaries of control volumes (e.g., element domains). We see
from the preceding developments that nodal fluxes and their continuous redistribution in
terms of the element basis functions are different but equivalent representations of the same
information, viz.,

∑
B∈ηe

(NA, NB)γ e Hh
B(Ä

e) = fe
A ∀A ∈ ηe, (94)

fe
A = (NA, Hh(Äe))γ e ∀A ∈ ηe. (95)

If we know the feA’s, Hh(Äe) is uniquely defined by (94). Likewise, if we knowHh(Äe), the
fe

A’s are uniquely defined by (95). These quantities are fundamental to the local conservation
structure of continuous Galerkin and stabilized methods.
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